The closest evolutionary relatives of pterosaurs: What the morphospace occupation of different skeletal regions tell us about lagerpetids
Corresponding Author
Rodrigo T. Müller
Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria, São João do Polêsine, Brazil
Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Brazil
Correspondence
Rodrigo T. Müller, Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria, São João do Polêsine, Brazil.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Rodrigo T. Müller
Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria, São João do Polêsine, Brazil
Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Brazil
Correspondence
Rodrigo T. Müller, Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria, São João do Polêsine, Brazil.
Email: [email protected]
Search for more papers by this authorFunding information: Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul, Grant/Award Number: FAPERGS 21/2551-0000680-3
Abstract
Exquisite discoveries and new interpretations regarding an enigmatic group of cursorial avemetatarsalians led to a new phylogenetic hypothesis regarding pterosaur affinities. Previously thought to be dinosaur precursors, lagerpetids are now considered to be the closest relatives to pterosaurs. This new hypothesis sheds light on a new explorable field, especially regarding the character acquisition and evolution within the pterosaur lineage. In the present study, the morphospace occupation of distinct skeletal regions of lagerpetids within the morphological spectrum of avemetatarsalians is investigated. This approach indicates which portions of the skeleton are more similar to the anatomy of pterosaurs and which portions present different homoplastic signals. The analyses demonstrate that the craniomandibular traits of lagerpetids are pterosaur-like, the pectoral girdle and forelimb are dinosauromorph-like and the axial skeleton and the pelvic girdle and hindlimb are unique and highly specialized among the analyzed sample. So, despite the close phylogenetic relationships, the postcranial skeleton of lagerpetids and pterosaurs are very different. The occurrence of two distinct and highly specialized groups of pterosauromorphs coexisting with a wide ecological range of dinosauromorphs during the Triassic suggests pressure for new niches occupation.
Supporting Information
Filename | Description |
---|---|
ar24904-sup-0001-supinfo.docxWord 2007 document , 61.5 KB | Appendix S1: Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Aires, A. S., Reichert, L. M., Müller, R. T., Pinheiro, F. L., & Andrade, M. B. (2021). Development and evolution of the notarium in Pterosauria. Journal of Anatomy, 238, 400–415.
- Apaldetti, C., Pol, D., Ezcurra, M. D., & Martínez, R. N. (2021). Sauropodomorph evolution across the Triassic–Jurassic boundary: Body size, locomotion, and their influence on morphological disparity. Scientific Reports, 11, 1–11.
- Arcucci, A. B. (1989). Locomotor structures in the middle Triassic archosaurs from Los Chanares (La Rioja, Argentina). Historical Biology, 3, 85–95.
- Baron, M. G., Norman, D. B., & Barrett, P. M. (2017). A new hypothesis of dinosaur relationships and early dinosaur evolution. Nature, 543, 501–506.
- Baron, M. G. (2021). The origin of pterosaurs. Earth-Science Reviews, 221, 103777.
- Bennett, S. C. (1996). The phylogenetic position of the Pterosauria within the Archosauromorpha. Zoological Journal of the Linnean Society, 118, 261–308.
- Barrett, P. M. (2000). Prosauropod dinosaurs and iguanas: Speculations on the diets of extinct reptiles. Evolution of herbivory in terrestrial vertebrates. In Perspectives from the fossil record (pp. 42–78). Cambridge University Press.
- Bennett, S. C. (2015). New interpretation of the wings of the pterosaur Rhamphorhynchus muensteri based on the Zittel and Marsh specimens. Journal of Paleontology, 89, 845–869.
- Benton, M. J. (1985). Classification and phylogeny of the diapsid reptiles. Zoological Journal of the Linnean Society, 84, 97–164.
- Benton, M. J. (1990). Origin and interrelationships of dinosaurs. In D. B. Weishampel, P. Dodson, & H. Osmolska (Eds.), The Dinosauria (pp. 11–30). University of California Press.
- Benton, M. J. (1999). Scleromochlus taylori and the origin of dinosaurs and pterosaurs. Series B: Biological Sciences, 354, 1423–1446.
- Beyl, A., Nesbitt, S. J., & Stocker, M. R. (2020). An Otischalkian dinosauromorph assemblage from the Los Esteros member (Santa Rosa formation) of New Mexico and its implications for biochronology and lagerpetid body size. Journal of Vertebrate Paleontology, 40, e1765788.
- Bouxin, G. (2005). Ginkgo, a multivariate analysis package. Journal of Vegetation Science, 16, 355–359.
- Brusatte, S. L., Benton, M. J., Ruta, M., & Lloyd, G. T. (2008). Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs. Science, 321, 1485–1488.
- Butler, R. J., Brusatte, S. L., Andres, B., & Benson, R. B. (2012). How do geological sampling biases affect studies of morphological evolution in deep time? A case study of pterosaur (Reptilia: Archosauria) disparity. Evolution, 66, 147–162.
- Cabreira, S. F., Kellner, A. W. A., Dias-da-Silva, S., Roberto-da-Silva, L., Bronzati, M., Marsola, J. C. A., Müller, R. T., Bittencourt, J. S., Batista, B. J., Raugust, T., Carrilho, R., Brodt, A., & Langer, M. C. (2016). A unique late Triassic dinosauromorph assemblage reveals dinosaur ancestral anatomy and diet. Current Biology, 26, 3090–3095.
- Dalla Vecchia, F. M. (1997). New observations on the osteology and taxonomic status of Preondactylus buffarinii Wild, 1984 (Reptilia, Pterosauria). Bollettino della Società Paleontologica Italiana, 36, 355–366.
- Dalla Vecchia, F. M. (2013). Triassic pterosaurs. Geological Society, London, Special Publications, 379, 119–155.
- Elgin, R. A., Hone, D. W., & Frey, E. (2011). The extent of the pterosaur flight membrane. Acta Palaeontologica Polonica, 56, 99–111.
- Ezcurra, M. D., Nesbitt, S. J., Bronzati, M., Dalla Vecchia, F. A., Agnolin, F. L., Benson, R. B. J., Egli, F. B., Cabreira, S. F., Evers, S. W., Gentil, A. R., Irmis, R. B., Martinelli, A. G., Novas, F. E., Roberto-da-Silva, L., Smith, N. D., Stocker, M. R., Turner, A. H., & Langer, M. C. (2020). Enigmatic dinosaur precursors bridge the gap to the origin of Pterosauria. Nature, 588, 445–449.
- Garcia, M. S., Müller, R. T., Da-Rosa, Á. A., & Dias-da-Silva, S. (2019). The oldest known co-occurrence of dinosaurs and their closest relatives: A new lagerpetid from a Carnian (upper Triassic) bed of Brazil with implications for dinosauromorph biostratigraphy, early diversification and biogeography. Journal of South American Earth Sciences, 91, 302–319.
- Hammer, Ø., Harper, D. A., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1–9.
- Hetherington, A. J. (2015). Do cladistic and morphometric data capture common patterns of morphological disparity? Palaeontology, 58, 393–399.
- Irmis, R. B., Nesbitt, S. J., Padian, K., Smith, N. D., Turner, A. H., Woody, D., & Downs, A. (2007). A late Triassic dinosauromorph assemblage from New Mexico and the rise of dinosaurs. Science, 317, 358–361.
- Kammerer, C. F., Nesbitt, S. J., Flynn, J. J., Ranivoharimanana, L., & Wyss, A. R. (2020). A tiny ornithodiran archosaur from the Triassic of Madagascar and the role of miniaturization in dinosaur and pterosaur ancestry. Proceedings of the National Academy of Sciences, 117, 17932–17936.
- Kellner, A. W. A. (2003). Pterosaur phylogeny and comments on the evolutionary history of the group. Geological Society, London, Special Publications, 217, 105–137.
- Langer, M. C., Nesbitt, S. J., Bittencourt, J. S., & Irmis, R. B. (2013). Non-dinosaurian dinosauromorpha. Geological Society, London, Special Publications, 379, 157–186.
- Lehmann, O. E., Ezcurra, M. D., Butler, R. J., & Lloyd, G. T. (2019). Biases with the generalized Euclidean distance measure in disparity analyses with high levels of missing data. Palaeontology, 62, 837–849.
- Lloyd, G. T. (2016). Estimating morphological diversity and tempo with discrete character-taxon matrices: Implementation, challenges, progress, and future directions. Biological Journal of the Linnean Society, 118, 131–151.
- Marsh, A. D., & Parker, W. G. (2020). New dinosauromorph specimens from petrified Forest National Park and a global biostratigraphic review of Triassic dinosauromorph body fossils. PaleoBios, 37, 1–56.
- Marsola, J. C., Ferreira, G. S., Langer, M. C., Button, D. J., & Butler, R. J. (2019). Increases in sampling support the southern Gondwanan hypothesis for the origin of dinosaurs. Palaeontology, 62, 473–482.
- Martz, J. W., & Small, B. J. (2019). Non-dinosaurian dinosauromorphs from the Chinle formation (upper Triassic) of the Eagle Basin, northern Colorado: Dromomeron romeri (Lagerpetidae) and a new taxon, Kwanasaurus williamparkeri (Silesauridae). PeerJ, 7, e7551.
- McCabe, M. C., & Nesbitt, S. J. (2021). The first pectoral and forelimb material assigned to the lagerpetid Lagerpeton chanarensis (Archosauria: Dinosauromorpha) from the upper portion of the Chañares formation, late Triassic. Palaeodiversity, 14, 121–131.
- Michael, S. Y., Baron, M. G., Norman, D. B., & Barrett, P. M. (2018). Dynamic biogeographic models and dinosaur origins. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 109, 325–332.
- Müller, R. T., Langer, M. C., & Dias-da-Silva, S. (2018). Ingroup relationships of Lagerpetidae (Avemetatarsalia: Dinosauromorpha): A further phylogenetic investigation on the understanding of dinosaur relatives. Zootaxa, 4392, 149–158.
- Nesbitt, S. J. (2011). The early evolution of archosaurs: Relationships and the origin of major clades. Bulletin of the American Museum of Natural History, 2011, 1–292.
- Nesbitt, S. J., Butler, R. J., Ezcurra, M. D., Barrett, P. M., Stocker, M. R., Angielczyk, K. D., Smith, R. M. H., Sidor, C. A., Niedźwiedzki, G., Sennikov, A. G., & Charing, A. J. (2017). The earliest bird-line archosaurs and the assembly of the dinosaur body plan. Nature, 544, 484–487.
- Novas, F. E. (1996). Dinosaur monophyly. Journal of Vertebrate Paleontology, 16, 723–741.
- Novas, F. E., Salgado, L., Suárez, M., Agnolin, F. L., Ezcurra, M. D., Chimento, N. R., Cruz, R., Isasi, M. P., Vargas, A. O., & Rubilar-Rogers, D. (2015). An enigmatic plant-eating theropod from the late Jurassic period of Chile. Nature, 522, 331–334.
- Owen-Smith, N., & Mills, M. G. (2008). Predator–prey size relationships in an African large-mammal food web. Journal of Animal Ecology, 77, 173–183.
- Pacheco, C., Müller, R. T., Langer, M. C., Pretto, F. A., Kerber, L., & Dias-da-Silva, S. (2019). Gnathovorax cabreirai: A new early dinosaur and the origin and initial radiation of predatory dinosaurs. PeerJ, 7, e7963.
- Palmer, C. (2018). Inferring the properties of the pterosaur wing membrane. Geological Society, London, Special Publications, 455, 57–68.
- Palmer, C., & Dyke, G. J. (2010). Biomechanics of the unique pterosaur pteroid. Proceedings of the Royal Society B: Biological Sciences, 277, 1121–1127.
- Peters, D. (2000). A reexamination of four prolacertiforms with implications for pterosaur phylogenesis. Rivista Italiana di Paleontologia e Stratigrafia, 106, 293–336.
- Pintore, R., Houssaye, A., Nesbitt, S. J., & Hutchinson, J. R. (2021). Femoral specializations to locomotor habits in early archosauriforms. Journal of Anatomy. https://doi.org/10.1111/joa.13598
- Rauhut, O. W. M., Fechner, R., Remes, K., & Reis, K. (2011). How to get big in the Mesozoic: The evolution of the sauropodomorph body plan. In N. Klein, K. Remes, C. T. Gee, & M. Sander (Eds.), Biology of the sauropod dinosaurs: Understanding the life of giants (pp. 119–149). Indiana University Press.
- Romano, M., Brocklehurst, N., & Fröbisch, J. (2017). Discrete and continuous character-based disparity analyses converge to the same macroevolutionary signal: A case study from captorhinids. Scientific Reports, 7, 1–9.
- Sereno, P. C. (1991). Basal archosaurs: Phylogenetic relationships and functional implications. Journal of Vertebrate Paleontology, 11, 1–53.
- Sereno, P. C., & Arcucci, A. B. (1993). Dinosaurian precursors from the middle Triassic of Argentina: Lagerpeton chanarensis. Journal of Vertebrate Paleontology, 13, 385–399.
- Soares, M. B., Dalla Vecchia, F. M., Schultz, C. L., & Kellner, A. W. A. (2013). On the supposed pterosaurian nature of Faxinalipterus minima Bonaparte et al. (2010) from the upper Triassic of Rio Grande do Sul, Brazil. In Short communications (pp. 95–98). International symposium on pterosaurs.
- Stecher, R. (2008). A new Triassic pterosaur from Switzerland (central Austroalpine, Grisons), Raeticodactylus filisurensis gen. Et sp. nov. Swiss Journal of Geosciences, 101, 185–201.
- Stocker, M. R., Nesbitt, S. J., Criswell, K. E., Parker, W. G., Witmer, L. M., Rowe, T. B., Ridgely, R., & Brown, M. A. (2016). A dome-headed stem archosaur exemplifies convergence among dinosaurs and their distant relatives. Current Biology, 26, 2674–2680.
- Tsai, H. P., Middleton, K. M., Hutchinson, J. R., & Holliday, C. M. (2020). More than one way to be a giant: Convergence and disparity in the hip joints of saurischian dinosaurs. Evolution, 74, 1654–1681.
- Wild, R. (1978). Die Flugsaurier (Reptilia, Pterosauria) aus der Oberen Trias von Cene bei Bergamo, Italien. Bollettino della Societa Paleontologica Italiana, 17, 176–256.
- Wills, M. A. (1998). Cambrian and recent disparity: The picture from priapulids. Paleobiology, 24, 177–199.
- Wills, M. A. (2001). Morphological disparity: a primer. In J. M. Adrain, G. D. Edgecombe, & B. S. Lieberman (Eds.), Fossils, phylogeny, and form: An analytical approach (pp. 55–144). Kluwer Academic/Plenum Publishers.
- Witton, M. P. (2008). A new approach to determining pterosaur body mass and its implications for pterosaur flight. Zitteliana, 28, 143–158.
- Witton, M. P. (2013). Pterosaurs: Natural history, evolution, anatomy (p. 304). Princeton University Press.
- Woodward, G., Ebenman, B., Emmerson, M., Montoya, J. M., Olesen, J. M., Valido, A., & Warren, P. H. (2005). Body size in ecological networks. Trends in Ecology & Evolution, 20, 402–409.
- Yang, Z., Jiang, B., McNamara, M. E., Kearns, S. L., Pittman, M., Kaye, T. G., Orr, P. J., Xu, X., & Benton, M. J. (2019). Pterosaur integumentary structures with complex feather-like branching. Nature Ecology & Evolution, 3, 24–30.